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Shortcoming of the method of initial parameters when used for determining 
oscillations of branched systems including those in which the boundary effect 

is present are pointed out. It is shown that these shortcomings are eliminated 

by subjecting the selection of parameters that define the state of a given 

section of the system, and of equations defining each parameter to specific 
conditions that are natural for the considered system. It is, then, as a rule 
to aaply the two-sided carry-over of parameters. It is further shown that the 
calculation of oscillations of variable cross section bars is considerably sim- 
plified by using the method of parameter carry-over in conjuction with the 

method of slow varying coeffcicents . Transverse oscillations of variable 
cross section bars are considered as an example. 

1, The investigation of stable oscillation of elastic bar systems and of a number 
of other phenomena reduces to the totality of problems of the determination of vector 
functions each of which depends on a single coordinate and is defined either by a system 

of ordinary linear differetnial equations ( along sections where parameters of an elastic 
system are continuous) or by conditions of conjustion (at the boundaries of continuity 
sections ). These relationships are supplemented by conditions specified at the bound- 

aries of a given function. A widely used device of solving such boundary value prob - 

lems consists of reducing these to Cauchy problems using the method of initial para - 
meters [ 1,4]. The latter method is, however, specifically adapted to chain systems 
in which the number of degrees of freedom of sections do not vary with the longitudinal 
coordinate. In the calculation of system with branches and intermediate supports the 
number of conditions at the beginning of a section which contain its parameters may 
not coincide with the number of such paramaters . Hence it becomes necessary to re - 
sort to devices alien to the idea of initial parameter method [ 2 - 6 1. 

Difficulties of another hind arise in systems with explicit boundary effect (boundary 
layer ) [ 4,7,8 1, when the solution contains exponentially increasing and decreasing 

functions. If for each of these hrlr -+ + . . + h,l,,-=@ (i’,n is the number of sections of 
the system, hj is the absolute value of the exponent of the exponential function along 
the j -th section, and lj the length of the latter), the reduction of the boundary value 

problem to that of Cauchy unavoidably leads to poorly defined systems [ 4-6 1. It is , 
thus, not possible to use in systems where the boundary effect is present the methods of 
one-sided parameter carry-over [ 41 for which all parameters of a given section of the 

system are determined by conditions established at that section beginning. 
It follows from the above that the selection of parameters which define the state 

of a system and of equations that define each parameter must be subjected to specific 
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conditions natural for that system. For instance, for systems in which the boundary ef- 
fect is present these parameters are to be selected so as to prevent mixing of boundary 

effects related to different boundaries of a particular section of the system. Thus, the 
parameter that defines the boundary layer at a particular cross section must not be based 

on conditions derived for some other corss section. The idea of such approach is close 

to that which is at the base of the asymptotic method proposed by Bolotin [ ‘7 - 91 for 
calculating oscillations of bars q plates and shells. 

2. As an illustration of the proposed method, which can be described as the method 
of two-sided carry-over of parameters (cf. [4] ), we present the sequence of calculation 
of free oscillations of a beam consisting of three constant cross sections. We assume 

that a concentrated load whose mass and moment of inertia are mr* and Jr, is applied 
between the first and second sections and an intermediate support is located between the 

second and third. We specify solutions for each section in the form [ 1 J 

Yj (Sj) = Yj (Xj)Aj 

Yj = {vjv Lj, Mjv Nj}, Aj = {aj, bj, pjv qj} (2.1) 

sin A cos A c -Ax A -Al 
ex 

Yj= 

aoosn - 1" sin A - kc-4 heAX-A1 

cha sin A - c?? co9 A chae -+c h -Al (2.2) 
- chre x 

- Ch3 c,os A ch3 sin A - ch% -Ax clt3e x 
A -A, 

i 

A j = Aj (Xj) ZTZ hjXj + Cpj, Aj* = hjXj, A.il = hjlj, hj = + ( 1 
v* 

3 

whereyj is vector (column matrix ) of state ( Vj is the deflection, Lj = ‘-‘j’ is the 

angle of turn, Mj = CjLj’ is the bending moment, Nj = MI' is the shear force 1, 
Cj is the flexural rigidity ) mj is the running mass, \yj is the matrix of solutions, and 

Aj is the vector of constants of integration. 

Using the two equations that follow from boundary conditions at end 51 = 0 
we express coefficients bt and pr (function p1 exp (-A1q) defines the boundary 
layer at cross section z1 = 0) in terms of a, and q1 

bl = ha1 + %1E1q1, PI = pd -I- Y31&qlr Ej = exp ( -1313) (2.3) 

Phase ‘PI is selected so that the inequality 1 p2, 1 ( 1 is satisfied. For instance, 
when a hinged support is located at cross section tr = 0, then assuming ‘pr = 0, we 
obtain &Q = ~21 = v31 - , and vQl = -0 -1. 

The conditions at junctions of adjacent sections of a bar are 

Vl (Jr) - va (0) = 0, L, (ZJ - L2 (0) = 0 (2.4) 
Ml (4) - J102Ll (4) - Jf2 (0) = 0, N, (4) + m,*02v, (4) - 

Iv2 (0) = 0 

v2 (j2) = 0, v3 (0) = 0, L2 (12) - L, (0) = 0, A¶, (13) - 
M, (0) = 0 

(2.5) 

Taking into consideration that the boundary effect at cross section xa = 0 de- 
termines functions which contain q1 and ~29 from conditions (2.4) we obtain (~2 = 0) 
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4%ql- bz - pa = - $‘a1 + Ear q&q1 - a2 + pz = 
- 4&l + Eat 4kl + b3 - pz = - q&1 + E,q, 

4&?1 -I- a2 f PS = - S&al + Ezq2 

Ml = $1 + ~21G + vslE1, $19, = 1 + vrlE& + vs1E: 

Sk = hG’(Cl- YZI~‘I- P~SIEI), - - - 7 Sj = sin AI( C~=COS Ai( 

from which follows 

(2.6 1 

41 = rwl -I- v&e, a2 = p12al + v12E2q2 (2.7 1 

b2 = Pasal f vs&qs, ~2 = pssal + vs2E2q2 

where the coefficients ppl, . . . , ps2 and v4t. . * *, v32 are solutions of system 

(2.6 ) by substituting- &ra, . . . ,-$14a and 1, . . . , 1. respectively, into its right- 
hand side. 

The boundary effect at cross section zs = 0 is defined by functions that con- 

tain qn and pa. Hence conditions (2.5 ) with allowance for relationships (2.7 ) yield 

S:iqz = - $;A, bs + ~3 = - Eaqs (2.8) 

$klP -a3 + ~3 = -$kh+ E343 

$;3q2 + b3 - p3= - $i3al+ E3qs 

<$t = PI&+ CL& + p32& 

@I = 1 - vnE2S2 + v22&G + ~32~9; 

@2 = W? (PI&~ - CLZZ& - p32&), . . .) 

when (ps = () . From Eqs. (2.8 ) we have 

42 = pasal + v4sE3q3, a3 = y13cl + v1sEsq3 (2.9) 

bs = ya3al + vs3E3q3, p3 = p3,al + v3sEsq3 

where ~42, . . ., p33 and vp2, . . ., v33 are solutions of system (2.8 ) when qpZla, 

07 922a, q23a and 0, 
_I, ‘I, 1. are, respectively, substituted into its right- hand side. 

Taking into account formulas (2.9 ) , from the boundary conditions at the end za = 

Ia we obtain two equations of the form 

Gal + $&I3 = 0, $&al + $&q3 = 0 (2.10) 

The frequencies o for which the determinant of that system vanishes corresponds 
to one of the principal oscillations of the system. The form of these oscillations can 

be determined from formulas(2.10), (2.9), (2.7), and (2.3). 
The increase of the order number of principal oscillations does not lead in the des- 

cribed method to any particular computation difficulties, since the order of the coef - 
ficients l&f and vrj remains unchanged with increasing frequency. Moreover in 

the case of fairly high frequencies with the numbers Ej < 1, it is possible to dis - 

regard the terms that contain these , and this considerably Isimplifies calculations (cf. 

[ 9 I). Note also that unlike in the method of initial parameters in the proposed method 

the presence of an intermediate support only simplifies the calculation. 
In the calculation of low-frequency oscillations when the appearance of poorly 
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defined systems does not present misgivings, there is no need to separate the boundary 
effect. In that case simpler equations are obtained by using fundamental systems of 
solutions. In the case of transverse oscillations of bars such system is defined by 

Krylov’s functions [ 11. 
Let us revert to the three-span beam considered above. Along each of its section 

we have 

“ = ‘jlS (‘]‘j) + ‘jzz’ (hj2j) ~ ",i3U(hj~j)+ Uj41/ (hj5j) 
_( 

Assuming that the left-hand end of the beam is hinged and using the conditions at 

the junction of the first and second bars, we obtain linear relationships of the form 

a2r = 62p12 f P2p14 (r =I, 2. 3,4) 

We express the equations which follow from conditions (2.3 ) as 

@)a ai 1‘z = - $$)a,,, %1 = 0 

I@ (114 - aa = - l$% 
12 129 *ii) a14- ass = - Igal2 

cg'= %I&+ * *.+ 524v2'2, A$' = Pa& -i_ . . . i- f%'Iv2 

9$= ~2~3321v2+ %d'z + %37'2 + ~24U2). . ..) 

Parameter as.3 remains arbitrary. The state of the third section is, thus, de-. 
fined by the two parameters =IZ and %4. (Similar results are obtained by the method 

of intermediate supports in the method of initial parameters in [ 3 1. It requires, however, 
extensive supplementary explanations ) . 

Boundary conditions at the end xs = Is yield the system 

$2) (4) 
31 012 + & a34 = 0 t qgu, + ~$2,4 = 0 

which makes possible the determination of the frequency and form of principal oscillations. 

3. In calculating branched systems it is necessary, first of all, to consider the 

branches between nodes. One of such bran- 
6 c 7 ches of a bar system is shown by AB in 

2 Fig, 1. It is assumed that perturbing effects 

5 are applied only at the segment boundaries. 

3 Let the vector of state Yj (Zj) of each 
0 B of the n sections of branch AB be defined 

ti) by formula (2.1) which contains the vector 
of constant parameters Aj = {aji, . . ., 

4 aj,}. When the boundary effect is absent 
or weak, then, using the conditions at section 
joints, it is necessary to obtain the relation- 

Fig. 1 ships 

Aj = KjA, + AjF (j = 2, . . ., n) (3.1) 

or (A, = Kj*An $_ AjF, .i = 1, . . ., n - I), where Kj(*) is the square 
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matrix of the carry-over and vector A,” appears in the presence of perturbation. 
Let us assume for definiteness that in the presence of the boundary effect ( that 

vector) is defined at the left - and right-hand ends of the j-th section by parameters 
aj, m-1 and aj,. Using the conditions at the segment junction it is then necessary 

to determine the relationships 

Aj = KJ’ {AT-“, anm}+Ar (i=i, 2, . . . . n) (3.2) 

Here and in what follows Ajm-’ = {ajz, . . -3 fQ,m-d. The square matrices Rj’ 
can be co~tmcted as follows. Let the system of equations defining the conditions at the 
junction of the j-th and the j -/- 1 -st sections be of the form YJ’A* $ Yj+: 

Asa = Fj or more precisely 

&%r + . . . + &majm + $j+r, la;jtl, 1+ . . . -I- $1+x, maj+x, m = Fj 

where $~,.r and $;+r,r are columns of matrices Y1f and ‘~j” (the latter gen- 
erally differ from y, (E,) and ‘$‘I (0)) and vector ~~ defines the perturbation effect. 
We write the obtained system as follows: 

y;;l”--1 Azyl + l&ajrn = - Y!‘fp:* n’-lAy-l - $i+1, nzaj+l, m + Fj (3.3)_ 
(j =1, . . ., n-i) 

uryx m-l = 11 qlj:, m . *I $, m-1 ]I (h = 0, l) 

Systems (3.3) are solved successively, For j = 1 we have 

A ,“” = M,Ar-” + vZazrn + A;* ‘n-1 
(3.4) 

arnz = P~ATZ-~+ vsnasm + a,F, (3.5) 

where Ms is a matrix of order, (m - 1) X (m - I), % and Elz are, respectively, 
column-and row-matrices of order m - 1, and vsm is a number. 

Relationships similar to (3.4 ) and (3.5 ) can evidently be obtained for any number j. 
Thus, if the equalities 

A?-’ = MjAfn-’ + Yjajm + ~7. “‘-1 

aj-.r , m = pjA?-’ + vima+ + acl 

(3.6) 

(3.7) 

hold, then by reducing the j-th system (3.3 ) to the form 

we can calculate 

AZ;’ = Mj+lAy-l + vj+laj+i, m -I- Af’L”-l (3.3) 

m-l 
a,im = pj+lAl 

F 

+ vj+l, &+l, m + %m (3.9) 

Solving Eqs. (3.9 ) in the reverse order, commencing with j = n - 1 * we obtain 
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(i=n--I, . . . . 1) (3.10 ) 
* * 

l%+1= &+1 + Yj+1,&+27 
* 

vj+l, m = vj+1,7?&*, m 

Substituting the expressions (3.10) into equalities (3.6 ) , we obtain 

AT-’ = M,*A,"'-l + vj*a,, -{- A:$ “‘-’ (i = 2, . . ., n) (3.11) 

Mj* = Mj + vj/.t,r+r, Vj* = VjVT+l, my AfIG In-’ = A:’ m-1 + VjlXTz 

Combining formulas (3.10) and (3.11) we obtain equality (3.2) where evidently 

(3.12) 

Although the algorithm is more complicated when the boundary effect is present, 

the volume of calculations is not increased. On the contrary, since the quantities Vj 

and vjm are proportional to exp (--hiZj), i can be reduced in the calculation t of 

high-frequency oscillations. 
For a closed system formulas (3.1) and (3.2 ) make possible the construction of the 

resolving system. Formulas (3.1) are applied in a manner described in [ 2.3 ] for the 
method of initial parameters. The use of formulas (3.2) is similarly simple. 

Let the closed system consist of n sections, In the absence of perturbation we have 

Ar = K1’ {A,“_l, anm}, A, = K,’ (47 %m) 

From the conditions of junction of the n-th and first sections we obtain the system 
of m equations 

Yl%l+ VI',"A= (Ya'Kn'f ~,°Kl'){A,"-l, unm} = 0 

which is to be used for determining the natural frequencies and form of oscillations. 
As an example of branched systems we shall consider the sequence of calculation 

of the free oscillations of the plane bar system shown in Fig. 1. Assuming that the sys- 
tem performs longitudinal bending or torsional bending oscillations, the state of its 

k-th branch can be defined by six parameters Atk) = {a,ck), . _ ., a,W) (k = I, . . ., 7). 

If each of the branches consists of several sections, then in’the absence of the boundary 
effect A(“) = A,(‘) (A,(“) is the vector of parameters of the first section of the k- th 
branch), while in the presence of that effect A(k) = (A1(“)5v ak\‘} ~{$r(“), . . ., a,,(“), 

u,,,,(“)), where parameters or, and u n6 ck) define boundary effects at the first 

section beginning and at the end of the last section. It is possible to eliminate from 

each branch 1,2,4,6, and 7 three parameters, using the boundary conditions. 
For example, for taking into account the boundary effect we express parameters 

as(L), a (Ir) and 4 +,(*) in terms of arCk), a,tk) and agCk) (k = 1, 2, 4, 6, 7) and, 
using the nine conditions at joint A, represent the nine parameters a,(‘), ,~s(l), a,(l), 

ur@), C+(2), a !@), a t3), a (3) and a5c3) in terms of the three 4(a). a3(3), and ag(s)_ 

In the same way, uskg tie conditions at joint B’ we express parameters a1t3), a,(s), 
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up , a1f4), as@), a,(*), a. (51, a4(5), and ah(s) in terms of 2 a,(s), .,(s) and aB(sl. The 
nine equations that follow from conditions at joint C contain nine parameters 

asck) and a8tk) (k = 5, 6, 7). 
a,@) 

We thus obtain a system which can be used for de&r- 
mining in the usual way the frequencies and forms of principal oscillations. 

4. In a number of cases such as, for example, that of bars of variable cross section 
when, owing to the considerable number of sections into which the system must be div- 

ided, the method described above becomes somewhat complicated. However it can be 

considerably simplified by combining it with the method of slowly varying parameters 

[ 10,111 or with some other variant of the perturbation method. It is then possible to 

represent a bar in the form of a combination of a small number of components within 

which bar parameters vary, but the vector of state can be represented with adequate 
accuracy by the formula 

Yi (Xi) = Hi (Xi) Ai + YiF (Xi), Ai = {ail, . . ., aim} (4. I,) 

where i is the ordinal number of the bar component, XI E [O, Zi] is its longitudinal 
coordinate, At is the vector of coefficients that are constant along the considered com- 

ponent, . Yip is the vector which appears when the perturbation effect is present. Mat- 

rix Hi which depends on the oscillation frequency and properties of the considered bar 
component is formulated so that the functions that define the boundary layer at the ex- 

tremities of that component appear separately in it. When passing from one component 

to another formula (4.1) is subjected to the same operations as described in Sect. 2 and 
3 relative to formulas (2.1). 

One of the methods of deriving formula (4.1) is demonstrated below on the example 

of a straight bar of variable colss section performing transverse oscillations. 
Let us assume that a straight bar contains a component (we omit its ordinal number 

for brevity ) within whose boundaries the parameters are piecewise -continuous functions 
of the longitudinal component i with fairly small relative variations. Taking into con- 
sideration that in calculations it is more convenient to use sums instead of integrals, we 

approximate the considered component of the bar by a stepped bar which consists of a 
fairly large number of sections of constant cross section. External loads are assumed to 

be a system of concentrated forces ,f (5) applied at joints of sections. Formulas (2.1) 

and (2.2 ) are valid for all sections of the bar. The x -coordinate is assumed to be the 

general coordinate for the whole of the considered component, and section ordinal 

numbers i are omitted. We further assume 

n,=~m-G A=A(x)=A,+cp, h(x)=[~]“~ 
0 

where m, c, and h are step functions. Vector A is evidently also a step function 
whose variation along the bar is determined by conditions of joining at cross sections 
x = X* where bar parameters change jumpwise and where external forces are app- 

lied. These conditions of joining are of the form 

Yf=Y-+F*, P" = (0, 0, 0, f(x*)) 
(zf = 2(x*), x*=~*~O) 
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Taking into account formula (2.1) we obtain Y-+A + = Y-A- + F* or 

AA =L: - (Y+)-lAYA- + (Y+)-l F” (AZ = z+ - z-) (4.2) 

Using formula (2.2 ) we represent equality (4.2 ) in the expanded form 

Aa = ---l/s (B + y) a- + ‘/a (/3 - y) (a- cos 2~” - 
b- SirJ 2A*) + I3 (P- + Q-) sin A* -+- (4.3) 

RI’ (- P- -t- Q-) + f,l cos A* 

Ab = -4~ (6 + y) b- - I/% (6 - y) (a- sin 2A* + 
b- cos 2A*) + p (P- + Q-) cos A* - @Y (-P- + Q-) + 
f,J sin A*, 

AP = --l/z (B + 19 P- + ‘.‘t [(y - 6) Q- + &- - fi‘ul- + 
f,l en* 

Aq = - 1/z(p + y)q- + V2 I(? - p) P- + thy + VU~- - f.+] e*+ 

B = (CAy, y = (a”) 4 (A), 0’ = (ch~) - (A) 

((2) = AZ / 2~“) 

f, = f b*> ! 2 ws)+, A* = A (x*), A, = A,., 
P = p esp (- A,) 

Q = q em f& - A,), u1 = a sin A + 6 cos A 
EIx = a cos A - b sin A 

In these equations it is possible to eliminate the first terms of their right-hand sides, 

and thus to separate out the asymptotic parts of functions u (x), b (z), P (x), and Q (5) 

( i,e. their principal parts when o -+ 00 1. We.set y = qy, (y = a, b, p, P,. . .), 
where the step function ?I (5) is determined by the difference equation 

AIJ = -V2 (6 + y) rl- (4.4) 

Taking into the relationship A (oo) L1 f)+& + o-dp, insteadof Eqs.(4,3)we have 

Aan = x [‘/z (j3 - y) (an- cos 2A* - b,- sin 2A*) f (4.5) 

p (Pn- + Qq-) sin A* -I- j3’ (- Y,,- + Qo-) cos A*] + Aaqr 

A& = X_ f- ‘12 (0 - y) &-sin 2A* + b,-cos &I*) + 

fi (Pq- .t Qn-) ~0s A” - p’(- Pq- + Qq-) sin A*] + Abqf 

Ap, = + [(Y - P)Qv- + SG, - B’G,I e** + &_ ewe 

4, = -$[(y - pp,- + pv;q + /3’u&] en+* - + a-** 

x=+7 &q,f zzz f* 
rl+ 

cos A*, Abqf = - -$ sin ,d* 

In conformity with the assumption made above the quantities e7 Yt and 6’ which 
define the relative variations of the bar parameters, are small. It fallows from Eqs. 
(4.5) that for free and resonance oscillations the relative increm~~ of elements of 
vector A, also small. Hence restricting ourselves to approximate results we set in the 
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right-hand sides of Eqs. (4.5) ci = 8, z c, (0) (c = a, b, p) andq,- = Qlrl -_= 
q?j (I). Carrying ~t~rnrnati~ and substituting for ease of calculation functions p 

and Q for p and g , we obtain the approximate relation&@ 

A&5) = K (x) A, + & (x) (4.6) 

2, = (&j, b,S j3,* G)t &I = @%t &? p,* C!rtt 

1 

k 43 = 
c 

_L(y _I @?AT-2A* 

The .wrns frim 0 to z and fmm 5 to f. extend over all quantities under the sign of 
summation which that, respectively appear in the intervals IO, X) and @, & 
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We denote by ‘Y, the matrix which differs from matrix Y by the substitution of 
unity for exp (- A,) and exp fit, - A*), We can then set 

Y = ‘PA = YqA,, = qYeA,, 

With due regard to (4.6 ) we obtain the required expression 

Y = qyr, (K& + A&) = HA,, + Yf (4.7) 

H = qYP,R, Y’ = qY,A$ 

Remark 1. Let us assume that the bar parameters are continuous functions of the 
longitudinal coordinate. Then increasing infinitely the number of sections of the approx- 

imating step bar, instead of Eq. (4.4) we obtain 

9. = d (cl*) d (ch3) dh d (As) -_==I---- 
11 

---4ch” 4h 4r)L’L 2chs 

which implies that 11 T/z = const or that for rl (6) = 1 (cf. Ill] ) 

This formula can be used in the case of fairly small relative increments of the step 
bar along each of its steps. On this assumption we have lY = B. 

Rem ark 2. The accuracy of formula (4.7 ) used for calculating free and resonant 
oscillations can be estimated on the basis of results in [ 111, It can be shown, using the 

reasoning of [lo], that the accuracy of formula (4.7 ) increases with increasing principal 
oscillation frequency. Generally this does not take place if for the elements of matrix 

(2.2) either hyperbolic or Krylov ‘s functions are selected. 

Although examples of bar systems oscillation were used here for illustrating the 
obtained basic results, the latter can be applied aLso for solving other boundary value 
problems of mechanics (such as oscillation of plates and shells, bending of beams of 
elastic supports, problems of the theory of elastic stability , etc _ 1. 
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